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Marco's field equations
Connection to Part III project These calculations are designed for your Part 

III project. Throughout, commentary takes the 

form of green text. Citations, where needed, 

will be managed by direct reference to arXiv 

numbers. One exception is the source referred

to throughout as `Blagojević'; this pertains to 

the book `Gravitation and Gauge Symmetries'.

Loading HiGGS and GeoHiGGS

For these calculations, we will use the HiGGS and GeoHiGGS packages. Note that GeoHiGGS was not 

developed for public release, and so is not documented. The versions of HiGGS and GeoHiGGS used for 

the computations here are both developer-only, and so we include copies of the sources with the

tarball.

------------------------------------------------------------

Package xAct`xPerm` version 1.2.3, {2015, 8, 23}

CopyRight (C) 2003-2020, Jose M. Martin-Garcia, under the General Public License.

Connecting to external linux executable...

Connection established.

------------------------------------------------------------

Package xAct`xTensor` version 1.2.0, {2021, 10, 17}

CopyRight (C) 2002-2021, Jose M. Martin-Garcia, under the General Public License.

------------------------------------------------------------

Package xAct`xPert` version 1.0.6, {2018, 2, 28}

CopyRight (C) 2005-2020, David Brizuela, Jose M. Martin-Garcia

and Guillermo A. Mena Marugan, under the General Public License.

** Variable $PrePrint assigned value ScreenDollarIndices

** Variable $CovDFormat changed from Prefix to Postfix

** Option AllowUpperDerivatives of ContractMetric changed from False to True

** Option MetricOn of MakeRule changed from None to All

** Option ContractMetrics of MakeRule changed from False to True

------------------------------------------------------------

Package xAct`Invar` version 2.0.5, {2013, 7, 1}



CopyRight (C) 2006-2020, J. M. Martin-Garcia,

D. Yllanes and R. Portugal, under the General Public License.

** DefConstantSymbol: Defining constant symbol sigma.

** DefConstantSymbol: Defining constant symbol dim.

** Option CurvatureRelations of DefCovD changed from True to False

** Variable $CommuteCovDsOnScalars changed from True to False

------------------------------------------------------------

Package xAct`xCoba` version 0.8.6, {2021, 2, 28}

CopyRight (C) 2005-2021, David Yllanes and

Jose M. Martin-Garcia, under the General Public License.

------------------------------------------------------------

Package xAct`SymManipulator` version 0.9.5, {2021, 9, 14}

CopyRight (C) 2011-2021, Thomas Bäckdahl, under the General Public License.

------------------------------------------------------------

Package xAct`xTras` version 1.4.2, {2014, 10, 30}

CopyRight (C) 2012-2014, Teake Nutma, under the General Public License.

** Variable $CovDFormat changed from Postfix to Prefix

** Option CurvatureRelations of DefCovD changed from False to True

------------------------------------------------------------

Package xAct`HiGGS` version 2.0.0-developer, {2023, 3, 7}

CopyRight © 2022, Will E. V. Barker and Manuel Hohmann, under the General Public License.

------------------------------------------------------------

HiGGS incorporates code by Cyril Pitrou.

------------------------------------------------------------

Package xAct`TexAct` version 0.4.3, {2021, 10, 28}

CopyRight (C) 2008-2021, Thomas Bäckdahl, Jose M.

Martin-Garcia and Barry Wardell, under the General Public License.

------------------------------------------------------------

Package xAct`FieldsX` version 1.1.4, {2021, 8, 26}

Copyright © 2019-2021 Markus B. Fröb under the GNU General Public License.

FieldsX uses the Multisets package ©

2011 David Bevan under the Wolfram Library Archive License.

** Variable $CommuteCovDsOnScalars changed from False to True

------------------------------------------------------------
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Package xAct`GeoHiGGS` version 1.0.0-developer, {2023, 3, 13}

CopyRight © 2022, Will E. V. Barker, under the General Public License.

------------------------------------------------------------

These packages come with ABSOLUTELY NO WARRANTY; for details type

Disclaimer[]. This is free software, and you are welcome to redistribute

it under certain conditions. See the General Public License for details.

------------------------------------------------------------

All the requisite packages have now been loaded, so we can proceed with the computations.

1. Deriving the field equations
HiGGS is designed to study the full ten-parameter Poincaré gauge theory, including nine extra parame-

ters which activate various Lagrange multipliers as defined in arXiv:2205.13534. As a first step, we 

define the most general case of the set of theories we are interested in by constructing a rule which 

constrains the Lagrangian couplings.

** DefConstantSymbol: Defining constant symbol MPl.

α^ .
1
→ 0, α^ .

2
→ 0, α^ .

3
→ 0, α^ .

4
→ 0, α^ .

6
→ 0,ℳPl

2 β^.
1
→ 0,ℳPl

2 β^.
2
→ 0,ℳPl

2 β^.
3
→ 0,

α_ .
1
→ 0, α_ .

2
→ 0, α_ .

3
→ 0, α_ .

4
→ 0, α_ .

5
→ 0, α_ .

6
→ 0,ℳPl

2 β_ .
1
→ 0,ℳPl

2 β_ .
2
→ 0,ℳPl

2 β_ .
3
→ 0

(1)

These rules are used to disable most of the coupling in the general theory. The couplings which are not 

suppressed are those which appear in the Lagrangian. Specifically the fi�h alpha-hat coupling, which 

mediates the quadratic Riemann-Cartan-Maxwell invariant. These remaining couplings will appear in 

the equations below.

The generalised momenta

Having done this, we define the generalised momenta associated with this subset of multiplier-con-

strained Poincaré gauge theory. These quantities are defined on p. 50 of Blagojević.

** DefTensor: Defining tensor BGPi-i, k, l.
** DefTensor: Defining tensor AGPi-i, -j, k, l.

The translational generalised momenta.

π  (2)

0 (3)

The rotational generalised momenta.

π 
 (4)
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-ℳPl
2 δ  δ 

   +ℳPl
2 δ  δ 

   - 2α^ .
5
δ 
   ℛ 

  +

2α^ .
5
δ 
   ℛ 

  + 2α^ .
5
δ    ℛ 

  - 2α^ .
5
δ    ℛ 

  +

2α^ .
5
δ 
   ℛ - 2α^ .

5
δ    ℛ - 2α^ .

5
δ 
   ℛ + 2α^ .

5
δ    ℛ

These generalised momenta are obtained from the Lagrangian represented in Eq. (4) of arX-

iv:2205.13534, with most of the coupling constants set to zero as per the above restrictions. Note that 

this Lagrangian differs from the most general Lagrangian represented in Blagojević by the use of so-

called geometric multiplier fields. These are multipliers which can disable all of the Riemann-Cartan or 

torsion tensors, but which may typically only be used piecemeal to disable select portions of said 

tensors. It is this latter use-case which we reaslise in our letter, disabling only the tensor part of the 

torsion.

Another note to be made here is about the caligraphic J and N symbols. Their appearance is an unfortu-

nate side-effect of recycling the Hamiltonian-based HiGGS package to work on Lagrangian problems: 

these quantities are the measure on the foliation and the Lapse function, respectively, and their prod-

uct is simply the determinant of the translational gauge field, (which is equivalent to the square root of 

the negative metric determinant).

The stress-energy tensor

Define the stress-energy tensor equation. In general, we will refer to an `equation' as an xTensor 

expression which we understand to vanish on the shell, accordingly we do not always make the equal-

ity explicit.

In terms of the generalised momenta, the Riemann-Cartan curvature, the torsion, and the gauge fields, 

and also in terms of projection operators which are used to define the various quadratic invariants, the 

le� hand side of the stress-energy equation as expressed in the first line of Eq. (3.24b) on page 50 of 

Blagojević is as follows.

- π  
   -

1

2
ℳPl

2 γ γ     ℛ -
1

2
π 

 ℛ +

α^ .
1
    .1^ℛ

 ℛ ℛ + α
^

.
2
    .2^ℛ

 ℛ ℛ +

α^ .
3
    .3^ℛ

 ℛ ℛ + α
^

.
4
    .4^ℛ

 ℛ ℛ +

α^ .
5
    .5^ℛ

 ℛ ℛ + α
^

.
6
    .6^ℛ

 ℛ ℛ +

α_ .
1
    .1^ℛ

 ℛ λℛ + α
_

.
2
    .2^ℛ

 ℛ λℛ +

α_ .
3
    .3^ℛ

 ℛ λℛ + α
_

.
4
    .4^ℛ

 ℛ λℛ +

α_ .
5
    .5^ℛ

 ℛ λℛ + α
_

.
6
    .6^ℛ

 ℛ λℛ - π    +

(6)
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ℳPl
2 β^.

1
    .1^

   +ℳPl
2 β^.

2
    .2^

   +

ℳPl
2 β^.

3
    .3^

   +ℳPl
2 β_ .

1
    .1^

  λ  +

ℳPl
2 β_ .

2
    .2^

  λ  +ℳPl
2 β_ .

3
    .3^

  λ  -

  ∂π + π     
  ∂ + π     

  ∂

We now impose the restriction on the coupling constants to go over to the most general case studied, 

and then we expand the projection operators and the generalised momenta. We subtract the right 

hand side, i.e. the (asymmetric) matter stress-energy tensor, to form the stress-energy equation.

-ℳPl
2  ℛ 

  +
1

2
ℳPl

2   ℛ + 2α^ .
5
 ℛ  

  ℛ 
  - α^ .

5
  ℛ  ℛ 

  + 2α^ .
5
 ℛ 

  ℛ -

2α^ .
5
 ℛ ℛ 

  - 2α^ .
5
 ℛ  

  ℛ 
  + α^ .

5
  ℛ  ℛ 

  +

τ
 

⩵ 0

(7)

This equation is nearly ready to use, but the (asymmetric) stress-energy tensor of matter first needs 

some attention. This is because it still depends on the contorsion, and later on in the analysis we will 

need to refer only to the metric-based part, from which the symmetric Einstein stress-energy tensor is 

eventually derived. Before moving on to the spin equations therefore, we will explore this matter.

Define the contorsion tensor to have strictly two anholonomic indices and a holonomic index, in line 

with its interpretation as a part of the connection. This is recovered through Eq. (3.32b) on p. 57 of 

Blagojević, with comparisons with Eq (3.46) on p. 61, and checks against the methods used on p. 67. 

Great care must be taken when attempting to achieve this index configuration using contractions of the 

HiGGS anholonomic torsion tensor with the translational gauge field and inverse:

** DefTensor: Defining tensor Contorsioni, j, -m.


 (8)

1

2
  

 -
1

2
 

 +
1

2
 

 (9)

Now in HiGGS we are used to using the following stress-energy tensor.

τ (10)

But this tensor, the (negative) variational derivative of the matter Lagrangian (density) as defined in Eq. 

(3.21) on p. 48 of Blagojević, still depends on the rotational gauge field. In the second order formalism, 

this means that it will depend both on the Ricci rotation coefficients and on the contorsion.

We now define the part which depends only on the Ricci rotation coefficients.
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** DefTensor: Defining tensor TorsionlessTau-i, -j.

To understand how the contorsion dependency enters in, we look at Eq.  (3.75b) on p. 66 of Blagojević. 

This separated Lagrangian is varied with respect to the translational gauge field, in such a way that the 

Ricci rotation coefficients and contorsion are held constant (they must have two Roman and one Greek 

index, so that they algebraically inherit the role of the rotational gauge field). The variation of the first 

term will give us the above quantity, which can then be expressed in terms of the Einstein tensor using 

the methods of p. 67 (we do this later).

The variation of the second term rests entirely on the variation of the spin tensor. This is rather suspi-

cious, since it means that the details of the spin tensor of matter have a say in whether we can recover 

the second order formalism at all. However to proceed, we look to the Dirac matter spin tensor in 

Example 2 at the end of p. 49 of Blagojević. We define a (Lorentz) quantity which is truly independent of 

the gravitational variables, being composed of Grassmann numbers and (indexed) generators of the 

Clifford algebra.

** DefTensor: Defining tensor SigmaRomani, -j, -k.

 (11)

Now the spin tensor is defined as follows.

σ (12)

    (13)

The whole of the correction to the second order matter Lagrangian density now takes the following 

form.

1

2


 σ (14)

1

2


 
    (15)

Now we remind ourselves about the derivatives with respect to the translational gauge field of some 

quantities.

The lapse function.

 (16)

'    ∂' (17)

The spatial measure.
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 (18)

'  ∂'
- '    ∂' (19)

The inverse gauge field.

  (20)

- '   ∂' (21)

Now that the dependence of the contorsion correction to the second-order Lagrangian on the transla-

tional gauge field has been made clear, we can use the above derivative laws to reconstruct the varia-

tional derivative of the correction.

-
1

2


  
 σ +

1

2
  

 σ + τ (Δ) (22)

-
1

2
σ  +

1

4
  

 σ '

 '
-

1

4
σ  +

1

2
  

 σ '

 '
+ τ (Δ) (23)

We are now ready to write a rule which converts the usual HiGGS stress-energy tensor into torsion-free 

and torsionful parts.

τ (24)

1

4
'  

 σ '

'
'

-
1

2
σ' '

+
1

2
'  

 σ '

'
'

-
1

4
σ' '

+ τ (Δ) (25)

Now we will also write a rule to invert this.

** MakeQuotientRule: canonicalised expression with tensor substituted by rule:

0

τ (Δ) (26)

-
1

4
'  

 σ '

'
'

+
1

2
σ' '

-
1

2
'  

 σ '

'
'

+
1

4
σ' '

+ τ (27)

Now the second order formalism `splitting' of the stress-energy current is understood, we will `split' 

the stress-energy equation.

-ℳPl
2  ℛ 

  +
1

2
ℳPl

2   ℛ + 2α^ .
5
 ℛ  

  ℛ 
  - α^ .

5
  ℛ  ℛ 

  +
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2α^ .
5
 ℛ 

  ℛ - 2α^ .
5
 ℛ ℛ 

  - 2α^ .
5
 ℛ  

  ℛ 
  + α^ .

5
  ℛ  ℛ 

  -

σ 

4
-
σ 

2
+
   σ 

 

4
+
   σ 

 

2
+
τ (Δ)
 

⩵ 0

This then is the final form of the stress-energy equation in the first-order formalism. How does it differ 

from the first version of the equation which we wrote down above? The matter stress-energy tensor has 

been decomposed into a metric-based part and a series of terms bilinear in the torsion and the matter 

spin tensor. The gravitational part of the field equations is unaffected.

Connection to Part III project This equation is the stress-energy equation 

which should give rise to some of the cosmologi-

cal perturbation equations. Remember that we 

can neglect the spin tensor, that the field 

strength tensors have only Roman indices, and 

that Greek indices are provided by the matter 

stress-energy tensor and the (inverse) transla-

tional gauge field wherever it appears. The 

factor of caligraphic J multiplied by caligraphic 

N is intended to mean the determinant of the

translational gauge field, I've just written it out 

in 3+1 notation. I'd recommend contracting 

this equation with the tetrad to produce two 

raised Greek indices, and then extracting the 

symmetric part (the Einstein equations) and 

the antisymmetric part (which you should 

prove is merely an identity, with the help of 

the spin equation later on).

We also construct a replacement rule to convert the torsionless stress-energy tensor into gravitational 

variables, i.e. torsion, Riemann-Cartan curvature and multiplier fields, according to this stress-energy 

equation.

** MakeQuotientRule: canonicalised expression with tensor substituted by rule:

0

The spin tensor

Having studied the general stress-energy equation, we turn to the spin-torsion equation. The spin 

tensor is defined in Eq. (3.21) on p. 48 of Blagojević.

Once again, in terms of the generalised momenta and the gauge fields, the le� hand side of the spin 

equation as expressed in the second line of Eq. (3.24b) on page 50 of Blagojević is as follows.
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π 
   - π 

   -  
  π   +  

  π   +
π    ∂ -   ∂π + π    ∂

(29)

We now impose the restriction on the coupling constants to go over to the most general case studied, 

and then we expand the projection operators and the generalised momenta. We subtract the right 

hand side, i.e. the matter spin tensor, to form the spin equation.

σ
 

+ 2α^ .
5
 ℛ 

'   '

 - 2α^ .
5
 ℛ 

 '  '

 +ℳPl
2   -

2α^ .
5
 ℛ 

'   '

 + 2α^ .
5
 ℛ 

 '  '

 + 2α^ .
5
  ℛ 

'   '

 -

2α^ .
5
  ℛ 

'   '

 - 2α^ .
5
  ℛ 

 '  '

 + 2α^ .
5
  ℛ 

 '  '

 -ℳPl
2   

 +

ℳPl
2   

 - 2α^ .
5
 ℛ 

  '

'
+ 2α^ .

5
 ℛ 

  '

'
+ 2α^ .

5
 ℛ 

  '

'
-

2α^ .
5
 ℛ 

  '

'
+ 2α^ .

5
'    ℛ 

'   - 2α^ .
5
'    ℛ 

'   -

2α^ .
5
'    ℛ 

 '  + 2α^ .
5
'    ℛ 

 '  - 2α^ .
5
'   'ℛ 

   +

2α^ .
5
'   'ℛ 

   + 2α^ .
5
'   'ℛ 

   - 2α^ .
5
'   'ℛ 

  ⩵ 0

(30)

This time we do not need to further decompose the matter sources, and so this constitutes the final 

form of the spin equations in the first-order formalism.

Connection to Part III project This is the spin equation, from which additional 

cosmological perturbation equations can be 

derived. You recall that the spin equation is 

obtained by taking variational derivatives of 

the action with respect to the rotational gauge 

field. Hence, the indices of the equation are 

precisely those of the rotational gauge field 

itself. That means that you can go ahead and 

decompose this equation just as you did the 

rotational gauge field, and the torsion tensor 

example I gave you earlier. Remember that the 

spin tensor itself can be set to zero.

Stress-energy conservation

We now have both sets of field equations at our disposal, with reference to their respective source 

currents. It would be helpful at this stage to verify the second conservation law from Eq. (3.23) p. 49 in 

Blagojević.
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-
1

2
  ℛ σ -   

 τ - 
  τ +  ∂τ (31)

Substitution of the field equations into this expression, which refers to the sources only, causes it to 

vanish. The calculation is computationally quite expensive, so we will omit it here.

Spin conservation

Equally, it is important to verify the second conservation law from Eq. (3.23) page 49 in Blagojević.

First term in the putatively vanishing expression.

-  τ (Δ) +  τ (Δ) (32)

Second term in the putatively vanishing expression.

-
 σ - 

 σ + ∂σ (33)

Once again, by substituting for the source currents on the field equation shell, we expect these terms to 

cancel, but the calculation itself is omitted for brevity.

Irreducible decomposition of spin equations

Assuming that the field equations have thus been correctly obtained, we find it important to decom-

pose them into their irreducible parts under the actions of the Lorentz group.

The largest and most cumbersome part of the spin equation, the tensor part with 16 degrees of 

freedom.

-
 
 σ 

 

3
+
 
 σ 

 

3
+

2  σ
3

-
' δ σ'

3
+
' δ σ'

3
+

4

3
α^ .

5
δ ℛ 

'   '

 -

4

3
α^ .

5
δ ℛ 

'   '

 -
4

3
α^ .

5
δ ℛ 

 '  '

 +
4

3
α^ .

5
δ ℛ 

 '  '

 -
4

3
α^ .

5
ℛ '

 '


 +

4

3
α^ .

5
ℛ '

 '


 -
1

3
ℳPl

2 δ 
 -

2

3
α^ .

5
ℛ'

'


 +
2

3
α^ .

5
ℛ '
 '


 +

2

3
α^ .

5
δ ℛ 

 '  '

 -
2

3
α^ .

5
δ ℛ 

'   '

 +
1

3
ℳPl

2 δ 
 +

2

3
α^ .

5
ℛ'

'


 -

2

3
α^ .

5
ℛ '
 '


 -

2

3
α^ .

5
δ ℛ 

 '  '

 +
2

3
α^ .

5
δ ℛ 

'   '

 +
4

3
α^ .

5
ℛ '

 '
 

 -

4

3
α^ .

5
ℛ '

 '
 

 +
2

3
ℳPl

2 
 -

4

3
α^ .

5
ℛ '

 '
 

 +
4

3
α^ .

5
ℛ '

 '
 

 +

2

3
α^ .

5
ℛ '

 '
 
 -

2

3
α^ .

5
ℛ '

 '
 
 +

1

3
ℳPl

2  
  -

2

3
α^ .

5
ℛ '
 '

 
 +

2

3
α^ .

5
ℛ'

'
 
 -

2

3
α^ .

5
ℛ '

 '
 
 +

2

3
α^ .

5
ℛ '

 '
 
 -

1

3
ℳPl

2  
  +

2

3
α^ .

5
ℛ '
 '

 
 -

(34)
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2

3
α^ .

5
ℛ'

'
 
 +

2

3
α^ .

5
 
  ℛ'

'
 - 2

3
α^ .

5
 
  ℛ'

'
 - 2

3
α^ .

5
 
  ℛ '

 '
 -

4

3
α^ .

5
  ℛ '

 '
 + 2

3
α^ .

5
 
  ℛ '

 '
 + 4

3
α^ .

5
  ℛ '

 '
 - 2

3
α^ .

5
δ ' 'ℛ 

   +
2

3
α^ .

5
δ 

' 'ℛ 
  +

2

3
α^ .

5
δ ' 'ℛ 

   -
2

3
α^ .

5
δ 

' 'ℛ 
  ⩵ 0

The simplest vector part of the spin equation, with four degrees of freedom.

-
' σ'


- 2α^ .

5
ℛ 
'   '

 + 2α^ .
5
ℛ 
 '  '

 + 2ℳPl
2 

 +

2α^ .
5
ℛ 
 '  '

 - 2α^ .
5
ℛ 
'   '

 + 4α^ .
5
' 'ℛ 

  - 4α^ .
5
' 'ℛ 

  ⩵ 0

(35)

The other simplest axial vector part of the spin equation, also with four degrees of freedom.

-
' ϵγ σ 

'


+ 8α^ .

5
ϵγ' ℛ   '

 -ℳPl
2 ϵγ' 

'
-

4α^ .
5
ϵγ ℛ  

'  '
+ 4α^ .

5
ϵγ ℛ' 

'
- 8α^ .

5
ϵγ ' 'ℛ   ⩵ 0

(36)

Here is a quick reminder of our irrep conventions for the torsion.

2

3
.1

 -
2

3
.1

 -
1

3
δ .2 +

1

3
δ .2 + ϵγ .3

(37)

And we also want to see what the teleparallel Lagrangian looks like, this is the double-bar T symbol 

which must be multiplied by the measure and half the Planck mass, with a positive sign (see eq. (15) in 

arXiv:2006.03581).

4

9
.1 .1

-
4

9
.1 .1

-
2

3
.2 .2

+
3

2
.3 .3

(38)

We will also take a look at our irrep conventions for the spin tensor.

 σ (39)

2

3
.1σ 
  -

2

3
.1σ 
  -

1

3
δ 
 .2σ +

1

3
δ  .2σ - ϵγ 

 .3σ (40)

Some care has to be taken when understanding how the vector and axial vector parts of the torsion 

couple to the respective parts of the spin tensor. The reason for this is that the spin tensor is con-

structed, as per the discussion above, with two Lorentz indices, and so in the stress-energy field equa-

tion there is a possible factor of two that can go missing unless the indices are kept carefully tracked. 
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When we go over to the GeoHiGGS second-order formulation in the next part of the script, all appear-

ances of the translational gauge field and its inverse are simply replaced by the Kroneker symbol. This 

is safe in the gravity sector of the theory, but not in the matter coupling.

Now we assume that every instance of an epsilon tensor appears with lowered Greek indices in the 

second-order formalism, so that it is safe to consider this equal to the original epsilon (with Roman 

indices assumed) with all indices contracted with translational (not inverse) gauge fields.

HoldPattern ϵγ  ⧴Module{xAct`HiGGS`Private`Zz9$13769, xAct`HiGGS`Private`Zz9$13770,

xAct`HiGGS`Private`Zz9$13771, xAct`HiGGS`Private`Zz9$13772},

xAct`HiGGS`Private`Zz9$13769 xAct`HiGGS`Private`Zz9$13770

xAct`HiGGS`Private`Zz9$13771 xAct`HiGGS`Private`Zz9$13772 ϵγ
xAct`HiGGS`Private`Zz9$13769xAct`HiGGS`Private`Zz9$13770

(41)

Note that the above output is a rule to be used internally by the script, not a mathematical expression. 

We will occasionally display such rules below as we define them.

Moreover, Greek-index curved-metric tensors will always appear so as to satisfy the following rules, 

where we use the flat-space metric of HiGGS as a temporary abuse of notation.

HoldPattern    ⧴Module{}, γ, HoldPattern    ⧴Module{}, γ (42)

HoldPattern    ⧴Module{}, γ, HoldPattern    ⧴Module{}, γ (43)

Here is the part of the Lagrangian in which the torsion is coupled to spin.

1

4
 σ   

  '

 
'

+  
  '

 
' -  

  
  (44)

Here is the expression expanded according to the above rules.

-
4

9
  '

.1σ' .1 +
1

3
 ϵγ'  '

.3σ .1 +

4

9
  '

.1σ' .1 -
1

3
 .2σ .2 -

3

2
 .3σ .3

(45)

The factors of the translational gauge field which appear here will be needed when we reconstruct the 

effective second-order theory at the end of the script, but this process will not be made explicit. More-

over, we note that it is better to assume a very general form for the matter spin tensor, such that the 

specific couplings between different fermion currents and the torsion are basically obscured.
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