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Abstract. We consider the effect of ‘shunts’ on an ultracold 1D gas of fermions
confined to an infinite square well - diabatic quenches where the well instantly
acquires a constant velocity. In the absence of interactions an analytic approach is
developed to characterise the solutions for shunts both subsonic and hypersonic with
respect to the Fermi-velocity. We further consider the case of Coulomb-interactions
in a physical quasi-1D gas with a radial harmonic transverse confinement. The
Hartree-Fock formalism admits an exact solution for the exchange potential,
similar to that of 3D jellum. Time-Dependent Hartree-Fock Theory (TDHFT) is
implemented to study the phenomenology of shunts in the physical gas.
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1. Introduction

There is a considerable body of experimental and theoretical work!® on the effects
of radiation on metallic crystals at the level of the crystal structure (i.e. in terms of
the arrangement of the ions): phenomena such as embrittlement and foaming may
be attributed to the formation of defects, voids, dislocation pinning, etc. However
these permanent phenomena must be the result of processes acting over much shorter
timescales. When a particle of radiation traverses a metallic crystal, it loses energy to
both the ions and the delocalised electrons at a rate with respect to the path length
known as the ‘stopping power’, which typically displays a ‘Bragg peak’ immediately
before the particle is arrested. The radiation damage to the crystal structure arises



partly from the subsequent equilibration of the electrons and ions, through electron-
phonon interaction. Hence, an understanding of the effect of the particle on the
electrons is necessary for a general understanding of radiation damage. Previous work
has focussed on the dynamics of the ions in the Born-Oppenheimer approximation!],
where electron state evolution is adiabatic. Many more recent studies®> 7l ¥ have
applied Time Dependent Density Functional Theory (TDDFT) to the electron states.
In most metals, the Fermi-velocity is vz & 108 cm s~!. This may be comparable to
the velocity of an « particle, but far below the velocities of 3 particles or the various
charged particles associated with cosmic rays. In these so-called swift particles the
formation of bow shocks and wakes in the electron gas is anticipated; [6] examines
these phenomena in the case of swift molecular ions.

There now exists a very rich selection of formalisms for modelling the weakly
perturbed interacting Fermi-gas. The theoretical starting point is generally considered
to be Landau’s Fermi Liquid Theory, or its counterpart in one dimension, Luttinger
Liquid Theory. In computational physics it has become practical to employ dielectric
response and TDDFT. Less prevalent in recent years has been the use of Hartree-Fock
theory, a mainstay of computational chemistry which can be usefully applied to model
homogeneous many-body systems with large particle number, such as electron gases.
Time Dependent Hartree-Fock Theory (TDHFT) is a possible candidate for modelling
fast, ionizing radiation amongst electrons partly because is not a perturbative method.

We will consider the minimal case of a swift but non-relativistic particle violently
impinging on a one-dimensional Fermi-gas. We model this by preparing the gas in
the ground state of an infinite square well, and then causing the well to suddenly
move at a constant speed - we refer to this as a shunt. Such a sudden change in the
Hamiltonian of a quantum system is generally known as a quench. We will use the
words ‘quench’ and ‘shunt’ interchangeably. This approach has the advantage that
it is general in the shunt speed: it can be applied to non-swift particles. Whilst the
‘pushed’ end of the well is more relatable to the radiation problem, we will be able to
study contrary effects at the ‘pulled’ end for free (this may, at a pinch, be interpreted
as a kind of ‘wake’ in one dimension).

Beginning in Section 2 with non-interacting Fermions, we will be able to
understand the behaviour of the shunted gas to a high degree by merely solving the
Schrédinger equation and following the distribution of number density in the well. In
Section 3, which may be read independently, we try to make the transition to a physical
gas. In particular we consider the quantum wire in which the transverse confinement
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is a radial harmonic potential. Within Hartree-Fock theory, the ‘blurred’ form of the
Coulomb interactions in the wire leads to an exact solution for the exchange potential;
the properties that follow from this may be of interest to experimentalists studying
quasi-one-dimensional Fermion gases. Finally in Section 4 we implement TDHFT in
a limited study of shunt phenomenology on a length of the quantum wire introduced
in Section 3.

Unless otherwise stated, we will work in either natural (% = 1, ¢ should not arise)
or CGS-Gaussian units, as is convenient.

2. Non-interacting Fermi-gas

2.1. The quench projection operator

The electrons in a one-dimensional metallic crystal are modelled as a Fermi-gas
confined to an infinite square well of length lo, corresponding to irresistible but
homogeneous ionic potentials. The Coulomb interactions are initially neglected. The
spatial energy eigenstates within the well can be written ¢, = \/2/—10 sin (nmz/lp),
where the quantum number n indexes the energy spectrum in the usual way. Such a
gas containing N Fermions will have average number density N/ly, but this will not be
uniform: as illustrated in figure 1 it will exhibit oscillations dominated by the Fermi-
wavelength near the walls of the potential. These are known as Friedel oscillations.

From some prepared state we diabatically quench to an identical well which
moves at velocity v from the initial position. Inside the moving well, in the original
(‘laboratory’) frame, the new energy eigenstates are,

2 g srimve - [ 07 (z — vt) 1 5, nr?
=42 nt+imvz , E = Z , 1
P loe sin A n = 5mu + Smi2 (1)

as may be confirmed by positing the form,
Un ~ f (z,t)sin (nm (z — vt) /o), (2)

and solving the Schrédinger equation for f(z,t). The additional phase factor,
exp(imwvz), is due to the extra momentum granted to the particle by the motion of
the well, and is a general feature of Galilean transformations of the wavefunction.
It is convenient to discuss this momentum in terms of the dimensionless number
g = muly/m, to be interpreted in the same sense as n with the caveat that ¢ is
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Figure 1. The N = 60 Fermi gas exhibiting Friedel oscillations near to the edge of
the well. Homogeneity increases towards the well centre.

not strictly a quantum number (indeed, it need not even be an integer). Understood
this way, g completely characterises the quench. We are concerned with the unitary
projection operator, C = Cjx |9;) (¢x|, that effectively carries us between inertial
reference frames. The matrix elements have the form,

q [1 —e ™ cos (m (k+ 7)) — Z'(quj)e‘i”q sin (7 (k +j))]
m (g2 — (k+4)%)

q [1 —e ™ cos (7 (k—j)) — iﬁk—qi)e‘“’q sin (7 (k — j))]
7 (g2 = (k—5)*)

Cjk: -

+ , (3

from which we see that C is symmetric, with power concentrated in the elements for
which the denominators in (3) are small. An example C is shown in figure 2.

2.2. A formalism for finding the quenched single particle state

In the absence of interactions we can in principle understand the effect of a quench
on the gas as a whole by elucidating the effect on 4, and summing relevant quantities
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Figure 2. [Colour online] The first 50 x 50 symmetric submatrix of the energy
representation, C;z, of the quench projection operator, ¢ = Cik [10;) (¢pg| which
implements the shunt. Illustrated here as a continuous function of j, k, with colour
indicating the phase and darkness the magnitude. This is a ¢ = 10 quench: note the
power is concentrated along the lines satisfying ¢% = (k+4)? - although the function
has no poles in j, k space - so that the matrix is banded. The ‘reflected’ line at
the top left corner is understood to be responsible for the mechanism by which a
Fermi-gas may be shocked; it arises due to the symmetry of choosing the sinusoidal
(rather than exponential) basis, for which the n are natural numbers.

over the zero-temperature Fermi-Dirac distribution. This useful linearity will not of
course hold for an interacting gas. In this subsection, we present an overview of the
method by which the quenched wavefunction, which we write ¢, — ®¢, can be found.



The culmination of this discussion will be an approximation for ®¢ given by (9), (10)
and (11), from which a consideration of the physics may begin.

A schematic understanding of figure 2 is enough to guess at many of the
phenomena that arise during this task: this is because the energy representation
in which figure 2 lives can be thought of as the result of folding Fourier-space down
the origin, and it is in Fourier (or ‘momentum’) space that the relevant calculation is
most intuitively done. Working, from this point on, in the shunted frame by sending
z — x — vt, the quenched state is,

/2 Al n252 : AL
e = Z Ecjn exp <z (§m1)2 = 2ml§) t 4+ zmvm) sin <]l—0m> ,  (4)
j=1

or, ignoring overall phase factors,

@qocio: Cin ex —iTerzt (e%x—e"%x) (5)
N - 2l 3 2ml2 '

The next step is to assume without loss of generality that ¢ is an integert{, removing
the need for repetitive translations and caveats. The momentum space is defined
by k = jn/ly. Using the fact that the continuous version of Cj;, is odd in ji,
the wavefunction can be written as a sum of four particular contributions: @I =
1M 4 23 1 323 L 2@ These are shown in Table 1, where Iz (k) is the Dirac

comb, 3 ez d (k‘ - %), and we define a new envelope function:

T )
o (B) = —— |1 — e "™ cos (g + Igk
) = | (wq -+ Lok)
—1 (1—}-%) e‘”qsin(wq—l—lok)}. (6)

Having separated these four terms, we transform back to give the contents of Table 2,
in which we have introduced important new physical quantities: the velocities v4 =
7 (n % q) / (mlpy), wavenumbers k. = n(nkq)/lo and frequencies wy = 72(nkq)%/2miZ.

tWith respect to the results that follow, for the non-interacting case, most quantities of interest
(e.z. number density of a degenerate Fermi-gas) can indeed be described by functions which
accommodate non-integer particle number, but we won’t discuss the generalization here. The case
of non-integer ¢ can be solved by slightly re-defining the Dirac combs in Table 1.

1 Therefore, we need not count from j = 0 upwards and can use the more comfortable extension
over negative wavenumbers.



Table 1. Separating the four contributions to lfﬂ

2mlE lo

zq (2) - -2 (nt+q—lok/m)°t w(ntq)
&4 %n (k) 1Lz () exp - __mr_)] *5(k+ )
$1 | _ [Xn (—k) Lz (k) exp( _mgxk_/)} *5(k_ = q>)

&)%(4) [)Zn(k)IH%( )exp( M)‘ *5(’6‘,‘3%)

b1 @ —[ (k) I1Lx (k)exp( m/ﬂt)]*g(k_m)

2ml3

Table 2. Separating the four contributions to ®Z.

[~

| @i | —lo/5555 [Xn (z) * Iy, (z) * 0 (x — vit) * 5

J piksm—iwyt

2

‘ Qq @ l 0y 27r3zt [Xn * IIIZlO ( ) *0 (iIT + U+t) * ezm; ] e_ik+x—iw+t
22
g ®) —lom [ n (=) * Mgy, () %6 (x — v_t) * ezz_t] eth-z—iw_t
S
of @ loy/55= Xn (z) * Iy, (x) * 0 (x4 v_t) * e | g~ th-a—tw—t

Taking the inverse Fourier transform we find,
o
Xn (2) = 2 \/%
1
h 2v2lgmig

and making use of the associativity and commutativity of the convolution,

_mz? 1 [m3it 3m i3m
Xn(x)*exp(z T ) = py3 [ f( Q—tx)—erf(wQ—t(:zH—lo))}

(6 e (z+10)? —211rq+ m 2 (z— lo)z)

[sgn (z) — sgn (z + lp)]

[5 (.’E + lo) — e_Ziﬂ-q(S (l‘ - lo)] y

2\/ 0TEq

(8)

We are therefore left, in the real one-dimensional space of the well, with a sum of four
unique plane waves. Each wave is modulated by copies of (8) recurring at intervals of

2y, which are shuttled backwards and [orwards over time.



2.8. Interpreting the quenched single particle state

The priority is now to simplify this modulation of the four plane waves. Fortunately,
the second term in (8) does not contribute significantly to the behaviour of the state:
in the calculation of physical quantities it gives rise to rapidly oscillating terms which
may be neglected§. The first term can be thought of as a window function built from
complex error functions which decompose into Fresnel integrals. The rapid phase
oscillations of these functions greatly complicates the simple qualitative picture], and
it is possible to work with the real error function as a surrogate. The corners of this
window function are softened by the breadth of the error function, of order \/t/_m
The new envelopes are shown in action in figure 3 and figure 4. These very significant
simplifications of the results of Section 2.2 leave us with a working mode! of the shunted

wavefunction:
P =31 D 4 p2 P 4 23 4 g ) (9)
where,
1 : . 1 : )
DY (1 — _ E(r — .t ezk+m—zw+t, PY 2 _ E(—x —uit e—zk+m—zw+t7
n m ( + ) n \/270 ( + )
. ) 1 . )
o1 ) = — E(—z+v_t)eh-omw-t o1 W = ___¢ (g 4 y_t)e -2t

n 20 " V2l
(10)

and the approximate choice of envelope,

&) = % [erf (\/ga:) —erf (\/g(:c + zo)>] # Ty, (1)

In practice (9), (10) and (11) prove to be a very reliable pedagogical model for the
quenched state: the qualitative behaviour described below perfectly replicates that
observed numerically|| in states derived purely with the matrix C over a very wide
range of parameters.

The principal physical derived quantity of the wavefunction is the number density,
|®¢|2. To this end, we identify the compressed phase, ®% © = 2™ 4 2@ and

8It is also suppressed by an O (l/q\/f) factor with respect to the first term, which may be
sufficient cause to discard it with a careful choice of parameters.

Y Furthermore they are notoriously difficult to implement computationally.

|[In Section 3 we will apply the many-body simulation to the non-interacting case, but the time-

independent Hamiltonian is easy to implement anyway.
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rarefied phase, % F = 7@ L 92 @ 56 that 02 = 37 4 02 B Iy the evaluation
of |7, (C)|2, the plane waves interfere where the envelopes overlap to give stationary
number densities of the form sin® (k,z), which is the expected number density of a
particle in the n+q excited state in the shunted frame. Analogously |®2 |2 produces
stationary patches of number density proportional to sin? (k_z), the number density
of the n — ¢ excited state in the shunted frame. Where and when these ‘phases’ are
manifest in the well is determined by the motion of the envelopes, and consideration of
the dependence of the envelope velocities, v4, on ¢ leads to the following conclusions:

(i) In the subsonic regime, ¢ < n, the compressed phase develops from the pushed
end of the well and the rarefied phase from the pulled end. They encroach on
the originally prepared pristine phase, (which is of course not stationary in the
shunted frame), by compression and rarefaction waves. These waves travel at the
overall velocity nm/mly, but their widths grow as 2¢rt/mly. This regime is shown
in figure 3.

(ii) In the Aypersonic regime, ¢ > n, both phases develop from the pushed end of the
well leaving a natural vacuum at the pulled end. The compressed phase is now
a local superposition of two states and is no longer stationary. The compression
and rarefaction waves now have velocities g /mly and widths 2nmt/mly. We may
refer to the compressed and rarefied phases and fronts as shocked and antishocked
phases and fronts. This regime is shown in figure 4.

The motivation for the terms ‘subsonic’, ‘hypersonic’ and ‘shock’ is more relevant to
the Fermi-gas discussed in Section 2.4. In the non-interacting Fermi-gas, which is
collisionless, sound waves propagate as a deformation of the Fermi-surface (or Fermi-
points in one dimension), at vp. In the language of quasi-particles this is considered
zero-sound. Note that the speed of subsonic fronts in the shunted frame, nw/mly, can
be identified as that of the particle in the state ¢, in the laboratory frame. It is easy
to verify that the remaining cross-terms,

2991 (CI)% (1)*@% 3 4 oL (1)*(1’% @ 4 P (2)*@% G oL (2)*(1)% (4)) , (12)

do indeed account for the number density of the original eigenstate, 4,,. On top of
these phenomena, the edges of the envelopes will be softening over time as described
above. Averaging over the density oscillations, it is apparent that in the subsonic
case, only the compression and rarefaction fronts have altered average densities, by
factors of 3/2 and 1/2 respectively. Of course in the hypersonic case, the regions at
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Figure 3. In the shunted frame, the n = 80 excited state, g, of the square well
shortly after the subsonic left-to-right shunt ¢ = 10 to the state ®1J. [Bottom]
The number density, |®33[%, shows the wavefunction to be partitioned into the
compressed, pristine and rarefied phases, separated by compression and rarefaction
fronts of altered average number density. [Top] The envelope functions described in
(10) and (11) correspond to the features in the wavefunction below.

the pushed and pulled end of the crystal have number density multiplied by 2 and 0.
Intermediate regimes such as ¢ = n are less satisfying, but by applying the relations
in (10) they can be efficiently described.

Returning to our starting point in figure 2, we can now relate the matrix elements
to the characteristics of the shunted state. In particular, the upper and lower
bands respectively construct the subsonic rarefied and compressed phases. The third
‘reflected’ band can be thought of as a hypersonic extension of the rarification band
and, together with the compression band constructs the shocked phase.

It is desirable to consider other derived quantities which can be written as densities
within the well, but here we encounter the very serious limitations of Schrédinger wave
mechanics. For example, we have little notion of the temperature of the state, still
less of the temperature at different points within it. This is because the system
is closed in the shunted frame, rather than coupled to some reservoir, and as it
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Figure 4. In the shunted frame, the n = 80 excited state, 439, of the square well
shortly after the hypersonic left-to-right shunt ¢ = 640 to the state ®$3°. [Bottom]
The number density, |©§3°|%, shows the wavefunction to be partitioned into the
compressed, pristine and rarefied phases, separated by compression and rarefaction
fronts of altered average number density. In this hypersonic case, these can be
considered shock and anti-shock fronts, the compressed (shocked) phase no-longer
resembles a stationary state and the rarefied (anti-shocked) phase is a vacuum. [Top]
The envelope functions described in (10) and (11) correspond to the features in the
wavefunction below.

exists in a pure rather than mixed state it is not meaningful to form the density
matrix. There is however a long tradition of studying the statistical properties of
pure states, in particular recent theoretical advances have been made in describing
the approach to thermalization, even of energy eigenstates!®. A cursory glance at
figure 3 or figure 4 tells us that the shunted state is far from equilibrium, indeed the
compression and rarefaction fronts will travel through each other many times before
the system develops a ‘temperature’s*, far beyond the initial stages of the evolution
so far described. Theoretical prescriptions for defining the temperature distribution

++In the long-time picture there arises another problem that has yet to be resolved: is the 1/v/%
behaviour in the envelopes at odds with a finite quantum revival timel'?] of the state?
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of many-body systems far from equilibrium have been suggested but are still in their
infancy!*% [11],

Alternatively we would like to know the stress energy densities associated with
the above features and for this we will need a Lagrangian field theory. A less-than
satisflying discussion of energy and momentum is confined to Appendix A.

2.4. Assembling the multi-particle picture

The single-particle results of 2.3 can now be applied to construct the multi-particle
case. Instead of shunting the nth excited state we will be shunting the non-magnetic,
fully degenerate ground state of the Fermi-gas. Neglecting the double-counting
from spin considerations, the gas contains N particles, and has a Fermi-wavevector
kr = Nr/ly and velocity vp = N7/mly. We will refer to the regimes N > ¢ and
N < ¢ as being subsonic and hypersonic with respect to the gas. It was found
in Section 2.3 that the single particle compression and rarefaction fronts have the
same velocity in the shunted frame as that associated with the particle in its initial
eigenstate. It might therefore be expected that the effects of the shunt on the Fermi-
gas will distributed across the spectrum of such velocities present in the gas - as
successive fronts extending between the ends of the well and the front associated with
the Fermi-velocity. With respect to number density this is found not to be the case.
Formally, the multi-particle state exists in a Slater determinant, but since the
time evolution is unitary throughout the shunting process, the shunted states remain
orthogonal and the number density of the gas is simply the sum of the number densities
of its constituent particles. This will be true even under the influence of interactions.
When N > 1 most of the number density at any point in the well can be accounted for
by initial states for which n > 1, therefore the main consideration will be of average
number densities within these states. Take for example the subsonically shunted gas
density near the pushed end of the well. In Section 2.3 it was established that the
average number density of the subsonically shunted single-particle state is altered only
within the compression and rarefaction fronts. It is necessary therefore to sum these
corrections to the nth densities over the /V states. Since the nth compression wave
travels at v, which is proportional to n, at any time the total density correction to
the gas is given by convolving the average overdensity of a single compression wave
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between the pushed end of the well and the Fermi-wavefront, vgt,

Ap(z) = /0 ! [% (erf (@(m—l— ”(”l—:q’t)) " 1)2

+% (erf ( -2m—t(—:c + W(nli:q)t)) l 1)2 - ﬂ dn. (13)

Any shunt subsonic with respect to the gas as a whole is hypersonic with respect
to its lowest energy components, however, carefully following the average densities
in a single-particle shocked state, we see that (13) is in fact still valid. Similar
considerations lead to the following conclusions, which are shown in figure 5:

(i) Inthe subsonic regime, ¢ < N, the compressed and rarefied gas phases are marked
by uniform changes of number density of +¢/ly. If the envelope softening can be
neglected, the gas compression and rarefaction waves are marked by constant
density changes which connect the phases, at sharp ‘kinks’ in the density p(x).
The compression and rarefaction fronts move at N7 /mly, the Fermi-velocity, and
their widths grow as 2qnt/mly.

(ii) In the hypersonic (shocked) regime, the compressed (shocked) gas phase has a
maximum number density of 2/V/l; and a vacuum forms at the pulled end of the
crystal. The fronts move at gn/mly and have widths 2Nt /ml,.

We found in 2.3 that the new compressed and rarefied phases of the single-particle
state were (locally) physically indistinguishable from stationary states in the shunted
frame. So far we have only dealt with average densities of the Fermi-gas, but a
similar result will follow if we take into account the density oscillations of the single
particle states when we perform the above summation. In Section 2 we introduced
the phenomenon of Friedel oscillations in the number density of the Fermi-gas. It
can be shown that on the approach to the ends of the potential well, the shunted gas
reproduces even these oscillations, corresponding respectively to the N +gand N —g
Fermi-gas. This is shown in figure 6.

That the front velocity is equal to the Fermi-velocity is another example of a
very general property of the Fermi-gas: the behaviour of the gas is characterised by
(that is not to say ‘dominated by’) the behaviour of its highest occupied state. This
is an emergent, collective phenomenon, and occurs without the need for interactions.
A basic manifestation of this principle are the Friedel oscillations themselves, whose
characteristic wavenumber is the Fermi-wavenumber.
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Figure 5. Schematic diagram of shunts acting on the Fermi-gas. [Top] The solid
line gives the number density of the subsonic ¢ = 10 shunt on the N = 50 gas,
showing the compressed and rarefied phases of density (V + ¢)/lp and (N — q)/lo.
The compression and rarefaction fronts are marked by uniform changes of density.
The dashed line gives the number density for the hypersonic ¢ = 300 shunt on the
same gas. The shocked phase has density 2N/ly and a vacuum forms at the far end of
the well. [Centre] In the subsonic shunt, each initial energy eigenstate through to N
contributes to the density, the shunted states have regions where the initial density
is multiplied by 2, 3/2, 1, 1/2 and 0 - shown in grayscale where white represents the
vacuum. The gas density is given by summing across these states. [Bottom] The
same process for the hypersonic shunt. Notice how, since the shunt is hypersonic
with respect to all the initial states, a vacuum forms at each energy level.
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Figure 6. [Colour online] In the shunted frame, number density of the N = 60
Fermi-gas having undergone a subsonic ¢ = 10 shunt. The compressed and rarefied
gas phases agree with the Friedel oscillations of the N + g gas ground states. [Black]
Number density of the shunted N = 60 gas. [Dark orange] Number density of the
ground state V = 70 gas. [Orange] Number density of the ground state N = 50 gas.

To more closely relate the picture of the N-gas in the infinite square well, Iy, to
systems found in nature, we can increase both N and [y together whilst holding N /lo
constant; this is the macroscopic limit. The resulting Friedel oscillations will exist at
lengthscales far below that of the well itself whilst the overall number density will be
unchanged. Note that once interactions are introduced, a natural lengthscale will be
set by the Bohr radius. We did not yet consider the relative importance of envelope
softening relative to compression, rarefaction, shock and antishock fronts, nor the
relative degrees to which these are ‘quantum’ phenomena. In the present quantum
system, this last question may not be a good one: the cold Fermi-gas does not obey
the correspondence principle because it is fundamentally quantum mechanicaltt. Re-
inserting /i, the envelopes soften with width /At/m while subsonic fronts have a width
qht/mlo, so we see that as i — 0 the ‘kinked’ fronts illustrated in figure 5 should be

{E.g. what is the classical limit of a BEC?
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dominated by Fresnel oscillations. The condition for kinked fronts is q/lo/ht/m > 1,
or if the front is observed when it has traversed a fraction € of the well, v/eq/vN > 1
and this must be combined with the condition N > q to give the correct regime. For
the hypersonic case as ever, the roles of ¢ and NV are reversed.

3. A Hartree-Fock dispersion relation for the harmonically confined
quasi-1D gas

The effect of shunts on the one-dimensional non-interacting Fermi-gas has yielded to
a mathematical approach which required very little physical insight: this is partly
because it does not represent a realistic physical system. We now try to develop
a more reasonable model for an interacting Fermi-gas in which the notion of one-
dimensionality can be quantified. Whilst this section forms the basis of the numerical
work in Section 3, it does not consider directly the problem of shunts, and it is hoped
that it may have more general applications.

3.1. The effective potential of harmonic confinement

We will be concerned with many-body electrostatic interactions. In electrostatics,
reduced dimensionality introduces its own problems: the Coulomb potential in two
dimensions is logarithmic and in one dimension it is linear. In practice, a one-
dimensional quantum system is one in which the dynamics of higher dimensions may
be neglected, this is the guasi-one-dimensional regime, and in it the Coulomb potential
is replaced by an implementation-dependent effective potential, V¢//(z). A quasi-one-
dimensional quantum gas can be constructed from its three dimensional counterpart
by enforcing a transverse potential with a spectrum such that, at the temperatures of
interest, the occupancies of excited transverse states can be neglected. A very general
class of potentials is of course the two-dimensional harmonic oscillator (for the most
generic cigar traps), although another highly motivated choice would be the infinite
cylindrical well (representing a ‘quantum wire’). We will consider the radial harmonic
potential of frequency w. So long as the electrons are known to be confined to the
transverse ground state, the single particle wavefunctions are separable in radius, r,
and the free axis, z, with charge density obeying [dzp. = (emw/)exp(—mwr?).
In a gas cooled to degeneracy, two considerations must be made when suppressing
the transverse dynamics. The first is the chemical potential. Dividing the gas into
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longitudinal and transverse subsystems in thermodynamic equilibrium with each other,
we require that the rate of change of occupancy at arbitrarily low temperatures with
respect to the energy of the subsystem to be much greater for the gas along the free

axis than in the harmonic well:

dn, 2m dN; 1 dmw
o2 o - (14)
dgl 7T]€F dgt 2w 7TkF

Secondly the ground state of the harmonic well can be chosen to be much higher than

the axial Fermi-energy. This condition will be written for later convenience as
kg

€= 5, (15)
for the (dimensionless) quasi-one-dimensionality parameter, . The condition (14) is
the real condition for quasi-one-dimensionality, whereas (15) is required for our very
simple choice of the radial ground stateff. Since kr = wN/ly, a convenient choice of
natural units in which mly = 7, used for the numerical work in Section 3, will mean
that (15) implies (14), since in a gas N must be numerically large. A discussion of
the shell effects that result from breakdown of quasi-one-dimensionality is given in
[2]. The effective pair potential along the axis is equivalent to the energy stored in a
parallel-plate capacitor with axisymmetric Gaussian charge density:

vrre) = (B)' [, [@n Rl tbaf) g

vis

V")F—f‘ le - X2l2

£«1,

Since this is evaluated over infinite limits, a simple translation of the variables gives
2 2
Vet (5) = 2 (mw)2/d2xl/d2x2exp [—mw (2|x1] + [x2]?/2)]
T

Va2 + |xaf?
[e’s) 2
—m 2
:ezmw/ drTeXpE___ﬂ/ )
0 Vx? 4 12
= /me’nexp (972332) erfc (n|z|), (17
where erfc(x) is the complimentary error function and 7 = \/mw/2, the confinement
parameter, is a characteristic wave number of the harmonic well - indeed 1/2n = o for

the radial variance of the density, ¢%; a modern nanowire might have 5 ~ 10° cm™,
but this is far too low. Most metals have a Fermi-wavevector of order kp ~ 10% cm™,

}tMore accurately, £ should be less than 2 to prevent occupancy of the first excited harmonic state
at low temperatures.
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for which (15) would require a wire of atomic width, on the level of the Angstrom§s.
The two variables £ and 7 are related by the Fermi-wavevector, £ = kr /2.

The new potential (17) is generally well-behaved at the origin and vanishes
at infinite separation. Note however that its integral does not converge, while its
transformation under 7 is area-preserving. In the limit » — oo the system describes
point particles on a wire, for which, applying I’Hopital’s rule away from the origin, we
recover the expected Coulomb potential,

e? e?

z#0, lim V() = \/I:I Jim yexp (y°) erfe (lyl) = PR

100
80
60
40
20

0
-0.1 0. 0.1

velt(z) /e

Figure 7. [Colour online] The logarithmic singularity of the Coulomb potential
(orange) is removed if the particles are assumed to be in transverse harmonic ground
states. From top to bottom & = 0.25, 0.5, 1, 2, 4.

3.2. The exchange potential

At this point we choose to be dealing with a simple jellum theory: the axial potential is
assumed to be uniform, and to cancel with the Hartree potential. In three dimensions
the Hartree-Fock eigenstates of Coulomb-jellium are plane waves. Applying this
principle to the quasi-one-dimensional case, the spectrum is to be given by

=5+ VX (18)

§8However, the bulk properties of a metal may no longer apply at this scale.
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where, with Fy(z) as the exponential integral function, the exchange contribution can
be writtenqq

VX _ _ e? 00 &’ kr 4 (kK)o 2 ‘ ;
Q= n 7 e erfc (n|2'})
. kg

2v/m
et (k=K [(k— k)2
-5 Lo S n B "

In order to resolve this non-standard integral and write (19) in the final usable form
(25), we make use of the Leibniz rule by positing the antiderivative,

&(z) = \/TEerﬁ(:v)El (z%) + F(z), (20)

for the odd function §(z) such that LF(z) = —(v7/2)erfi(z) L F) (2?). To proceed,
a series expansion for such an §(z) must give,

o0 [o o]

%&(m) = (@2 + Va? = 2% o "Dn! ; (‘1:! e

=0
and following Frobenius’ prescription for solving ODEs, the coefficients a; are given

by equating powers:

2(-1) & (=)™ /1
= _ 22
‘” (21+1)l!§(2n+1) n (22)
Applying a well known combinatorial identity for the reciprocal of a binomial

coeflicientx * *,

(1) Bl

i=1

the series can be written,

o 2(-1) AN (=220 4 1) (1)
GRS RN AR U+ 120+ 1)V
where the last equality employs the Gamma function of half-integer arguments.
By considering the ratio of consecutive coefficients, ai11/a; = —(3 +1)/(3 + )%,

ay

99Indeed, the integrand of (19) is mentioned in [1] as being the form factor of the transverse

number density for just such a wire.
+ x *See, for example, Gould’s book: [13].
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this series is recognizable as the gencralized hypergeometric function, F(z) =
2z2Fy (1,1;2,3, —2%), so that the exchange potential may be written:

Y2190
2 \/_ 1 3 ktkp
x_ &N |vT 2) _ 1,33 _ 2\ 7
Vet = - [2 erfi(z)E1(z°) — 222 F5 (2,1,2,2, x)}m (25)
2

3.8. The dispersion relation

—-100

-120

-2 0
k/kp

Figure 8. [Colour online] The parabolic dispersion of free particles is in orange.
From top to bottom £ = 0.1, 0.5, 1, 5, 10.

The potential (25) is remarkably similar to the well-known dispersion relation
of three-dimensional jellium'”l. The renormalized mass of low energy Hartree-Fock
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particles in the |k| — 0 limit is given by the curvature,

m* = %:I_I)I(l) W. (26)
In the present case the correction is

fim m 0y = 2 1+ B ()] (27)

k=0 dk2 k ap ’

where 7, = n/4kp is the separation of Hartree-Fock particles in the very cold, non-
magnetic Fermi-gas and ap = 1/me? is the Bohr radius. The contribution in & must
be an artefact of the confinement since it is the only manifestation of 7, and apparently
vanishes as 7 — 0. Conversely the effective mass of low-energy Hartree-Fock particles
is reduced to m*/m = 1/(1+ 2r,/rg) in the strongly confined limit of point particles.
The analogous effect in three dimensional Coulomb-jellium is significantly weaker,
with m*/m ~ 1/(1 + 0.22r,/rp).

1.
0.8
0.6
0.4
0.2

0. -
0.1 0.5 1 5 10 50 100

m*/m

Figure 9. The effective mass of low-energy Hartree-Fock particles is reduced by
confinement. From top to bottom rs/ag = 1/2, 1, 2, 4, 8, 16.

As in three-dimensional jellium, the band width of occupied states is increased
by the exchange interaction. The ratio of the interacting bandwidth, Egz to that of
free fermions, & is given by

5HF 2 ﬁ

1
&~ g6 - 28] (28)

and for ¢ <« 1 the band width approaches Exr/& = 1 + (2In2/72)(rs/ag), or
Eur/& ~ 1+ 0.14(rs/ap), however the result for three dimensional Coulomb jellium

is now stronger, being Exr/E ~ 1 + 1.22(r5/ap).
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In order to relate to the degenerate Fermi-gas discussed in Section 2 we will not
be concerned with 75/ap > 1. The above theory could in principle be extended with
an expansion for the energy density of the electron gas with respect to rs/ap, and a
discussion of magnetic phases and quasi-one-dimensional Wigner-crystallization.
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Figure 10. [Colour online] The band-width of the wire relative to that of free
particles. From bottom to top 7s/ag = 1/2, 1, 2, 4, 8, 16.

A final important observation is that the group velocity is singular at kg, since
the gradient under the integral sign of (19) is,

d e? ktkp
BT X = o [exp(xQ)El(xz)}ﬁﬂ . (29)
2

This clearly absurd effect is also famously predicted for 3D Coulomb-Jellium. It
is understood to be caused by the fact that Coulomb interactions are long range.
Whilst the V() of the harmonic wire suppresses the singular origin of the Coulomb
potential (this is the feature that enables us to evaluate the Hartree and exchange
integrals in Section 4), it does not suppress the asymptotes, and the theory of the
exchange potential developed here will be badly incomplete without consideration of
electron screening.
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4. Interacting Fermi-gas: time-dependent Hartree-Fock theory

4.1. Phenomenology of the quenched state

In this section we present qualitative observations of shunts in the system described
in Section 3, where the infinite square well is imposed on the free axis; this can be
thought of as taking a quantum wire of finite length. Details of the system and of the
numerical methods used are confined to Section 4.2 and Appendix A. These results
are interpreted under the concluding remarks in Section 5.

TDHFT was implemented in a basis of d = 100 for Fermi-gases of roughly N = 50
electrons, interacting under the V*//(z) in (17) with quasi-one-dimensionality & = 1.
Electron charge, ¢, was taken as a free parameter.

The interacting ground states could be found very effectively by applying
convergent Hartree-Fock theory. As the charge is ‘switched on’, the electron repulsion
forces the ground state gas towards the walls of the well, resulting in a ‘meniscus’. A
key result of the non-interacting theory in Section 2 was that the compressed phase
approached the ground state of the N + ¢ gas near the pushed wall, reproducing even
the Friedel oscillations, and it was found that this principle extends to the interacting
case, shown in figure 11. Remarkably, this behaviour could be observed even when
the prepared state was not an interacting ground state: the compression wave reliably
left behind an ultracold N + g-Fermi-gas.

The dependence of the velocity of the compression or shock front, v(©), on the
interaction strength was studied for various shunts, with examples shown in figure 12.
For subsonic shunts, v(©) was linear in the interaction strength. The relationship was
not affected by the shunt speed so long as it was subsonic (within reason: the quality
of the data was reduced for fast subsonic shunts), indicating that the dependence is
a property of the gas itself. For hypersonic shunts no such general relationship could
be observed. Qualitatively, the speed of the shock front was often reduced by the
interactions, and it was not a gas property.

For increasing Fermi-velocity in the gas, the relative deviation in v(©) was found
to be monotonically decreasing as shown in figure 13.

4.2. Methods for TDHFT in the infinite square well

The implementation of TDHFT generally presents two principal computational
challenges: formation of the Fock matrix and unitary time evolution. During the
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Figure 11. [Colour online] In the shunted frame, number density of the N = 60
electron gas in a length of wire having undergone a subsonic ¢ = 10 shunt. The
compressed and rarefied gas phases agree with the Friedel oscillations and meniscus
of the N + ¢ gas ground states. [Black] Number density of the shunted N = 60 gas.
[Dark orange] Number density of the ground state N = 70 gas. [Orange] Number
density of the ground state NV = 50 gas.

post-shunt time evolution of the system we work in the ‘shunted’ frame in which
the well is stationary. In this frame we can define the atomic basis, |1,), where the
1, are as defined in Section 2. This basis corresponds to the non-interacting energy
representation, and numerically we must impose an upper cut-off, working with its first
d elements. At any time the N-particle Fermi-gas exists as a multi-particle state in the
form of a Slater determinant, with single-particle wavefunctions |x,), this we call the
moleculor basis. The terms ‘molecular basis’ and ‘atomic basis’ are conventions from
quantum chemistry. In the atomic basis the multi-particle state can be represented by
the d x N matrix, S, = (¥,|xs). The Fock matrix is the Hartree-Fock approximation
for the Hamiltonian, in the absence of external potentials it takes the form,

Hje = hy + U5 + UG, (30)
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Figure 12. [Colour online] Relative deviation in compression and shock front
velocities, v(%), (from non-interacting theory, 'uéc)) in the quantum wire as the
electron charge, g, is increased, for various choices of Fermi-velocity, vz, and shunt
velocity, v. [Blue] Subsonic shunt: N = 50, ¢ = 10, v = 0.2vp. [Black] Subsonic
shunt: N = 50, ¢ = 20, v = 0.4vp. [Red] Hypersonic shunt: N = 30, ¢ = 50,
v = 1.7vp. [Orange] Hypersonic shunt: N = 20, ¢ = 60, v = 3up. The ‘scalloped’
variations in the subsonic ¥(®) are thought to be an artefact of Friedel oscillations
moving near the compression front, see Section 4.2.

where h is the usual Laplacian Hamiltonian of free particles and U®) and U®
are matrices of the Hartree and exzchange operators defined (using the summation
convention) by,

USED = (sl Cal G bad [w) . USE) = (] Gl & o) ) (31)

with the pair interaction given by the operator G. In real space, G appears as the
kernel V//(z; — z,), and in the atomic basis as a fourth rank Cartesian tensor,
Gijiw = (Wil (1] G |4x) |4). The matrix elements in (31) are known as the Hartree
integrals and ezchange integrals, using the outer product, P = SS¥, they can be written
as variations on the same contraction:

U;f) = GjimkPim, U;-f) = Gtk Pim.- (32)
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Figure 13. [Colour online] Relative deviation in compression and shock front

velocities, »(°), (from non-interacting theory, v,
a variable number, N, of electrons, for three choices of electron charge, q. [Black]
¢?/e? = 9.9 x 1073, [Orange] ¢?/e® = 7.7 x 1073, [Dark orange] ¢%/e® = 5.5 x 1073,

UG = Tr AP, U =Tr NP
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) in the quantum wire against

We can further define the d? matrices Ajgim = Gjimk and Mg = Gjikm so that,

This last step is mathematically trivial but computationally useful, because if we have
the relevant A, 1 and P to hand, the evaluation of a Fock matrix element is the same
as taking a d-dimensional trace. Many programming languages support optimized
routines for matrix algebra, but not tensor algebra. In order to assemble a library of
the A and M, we must still evaluate all the elements of G; this is an O (d*) task, but




is made 2° times easier by the symmetries of G. More importantly we may exploit the
real space form of the atomic basis:

4 lo lo

l_2/ d.'L'ld.’L'z[Si(Z'Q)Sj(.’L'l)Veff(iL'l . CEQ)Sk(.'IJl)Sl(.’Ez)], (34)
0Jo Jo

where s, (z) = sin(nrz/ly). By inspecting the form of (34), it is clear that the G,z can
be thought of as a sum of sixteen points in k-space of the double Fourier transform,

D(ky, kg) = //da:ldwg [Veff(xl — xQ)w(xl)w(xQ)e—i(k1z1+k2x2)] , (35)

where w(z) is the window function extending from 0 to lo. This is an example of
Plancherel’s theorem. Since the points to be sampled are of the form (jm/ly, kr/lo)
for integer j, k, it should only be necessary to calculate the discrete Fourier transform,
equivalent to the periodic extension of V¢/f(z; — x;) over the two-dimensional lattice
with parameter 2l,. This calculation lends itself well to the Fast Fourier Transform
(FFT).

For our applications, it was not usually necessary to perform more than 102 time
steps in any simulation, allowing us to use the full unitary time-evolution operator,
U = exp(—4H6t), which enforces the conservation laws of H. Instead, the bottleneck
formed at the point of reading the A/l libraries at each iteration: a practical
balance was struck with a d = 100 basis.

In order to measure the position of the compression front, the front itself must be
defined. From Section 2 it was understood in the subsonic, non-interacting case, to
be the region of transition in number density, p(z,t), from that of the compressed
gas phase, p(“)(z,t), to the pristine gas phase, p®)(z,t). A clearer picture of
this transition (which suppresses the Friedel oscillations) is given by the measure,
m(z,t) = [p(z,t) — pP(z,t)] / [P'O(z,t) — pP)(z,1)], so that near the pushed wall
and the centre of the well, 7(x,t) should approach 1 and O respectively. The ‘front’
might then be taken as the normalized first moment of 8,7(x,t) within the first half
of the well:

Gijm =

lo/2
- r(lo/2,t) — [/ der(z, 1)
T(l0/2, t) -1
A study of the non-interacting regime is merely the evaluation of a pre-determined; § }
function rather than a simulation, and my be conducted to arbitrarily high precision.

(36)

1 T fL.e. pre-determined, by the matrix C in Section 2.
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The measure in (36) was found to be in excellent agreement with the established non-
interacting result that ©; = vp, however is was not reliable for hypersonic shunts due
to the time-dependent nature of the shocked phase. Instead it was generally necessary
to measure the shock front by solving p(z,t) — pt¥)(x,t) = ¢ for = x, at various c.
A more serious problem was presented by the fact that, at NV = 50 Fermions, even
7(x,t) was not usually monotonic near the front. As a result, z; had a tendancy to
follow ‘false peaks’ in 7(x,t): the value of ©; may change very smoothly with the
parameters until a change of peak, at which point there will be a discontinuity. The
errors shown in figure 12 are sensitive to this, however (the same effect causes periodic
‘braiding’ in the z;(¢) measurements which reduces the quality of the linear regression
calculated for each point), which gives them an oversized appearance, relative to the
(local) smoothness of the plot.

Within natural units, it is very convenient computationally to choose a scale for
energy, & in which m, = & and lp = £ . This gives & ~ 2.61 x 1077 erg, so that
we work in a well of length [y ~ 2.61 x 10~° cm, or a quantum wire of perhaps only 102
atoms. This is far smaller than modern nanowires, and in order for the behaviour of
the electron gas to be qualitatively relatable to that of the non-interacting Fermi-gas
described in Section 2, the electron charge must be reduced by a factor of roughly
10~3. The corresponding increase in the Bohr radius should guarantee that we are in
the high density regime of the electron gas, where the behaviour is dominated by the
kinetic energy.

5. Concluding remarks

Schrodinger’s wave mechanics have provided a remarkably clear picture of the non-
interacting shunted gas. A very cold one-dimensional Fermi-gas, when pushed or
pulled consistently at a speed below the Fermi-velocity, changes phase to regions
of altered number density via wave-fronts that spread at the Fermi-velocity in the
moving frame. Furthermore these new phases are, to an excellent approximation,
ground states of the gas with respect to this number density. Conversely if the gas
is shocked, the shockwave moves at the speed of the applied potential in the moving
frame (twice the shock speed in the laboratory frame). The shock leaves behind an
excited state of twice the initial number density and the anti-shock leaves behind a
vacuum.

The physical quasi-one-dimensional electron gas is a far more complicated system.
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Considering only the exchange interaction within Hartree-Fock theory it is apparent
that the spectrum of the quantum system and all its properties are greatly altered,
however since we have not taken shielding into account the picture is far from finalized.

Hartree-Fock theory is well suited to quantum many-body systems confined to
the infinite square well: it is possible to quickly calculate the integrals relevant to the
formation of the Fock matrix in advance, to arbitrary precision, and to do so for a
general pair potential.

TDHFT in an unshielded quantum wire supports the behaviour predicted in the
non-interacting Fermi-gas subjected to pushes and pulls below the Fermi-velocity. Of
particular interest is the unexplained ‘cooling’ of the new phases to their respective
ground states.

Interactions increase the speed of compression fronts in subsonic shunts, the speed
is seen to be linear in the interaction strength (the square of the electron charge). As
was mentioned in section 3, the unshielded interaction potential is long range; in one
dimension its (single body) scattering length diverges!'®l. Consequently, perturbative
waves in the number density must be considered collisional at all wavelengths, giving
rise to the phenomenon of first sound. The form of the relationship observed in
figure 12 is that expected for the speed of first sound waves, as mentioned in [2].
Furthermore as the kinetic energy of the gas increases the enhancement of first sound
speed should be ‘drowned out’, which may explain figure 13. This would be a satisfying
development of the implicit understanding of zero sound for subsonic and hypersonic
shunts in the non-interacting gas. However, since our approach was to simply export
the bare Coulomb potential of the quasi-one-dimensional system into a numerical
many-body method, we cannot truly qualify the nature of interacting compression
fronts. Particularly, we can offer no formal relationship between the dispersion relation
(19) and the propagation of the interacting compression fronts without a consideration
of screening effects.

If the harmonically confined wire is considered useful, the effects hinted at here
may be elucidated by a study of its dielectric response function. Efforts in this direction
have already been made, for example in [1]. Such considerations may provide our
TDHFT implementation with a better-motivated choice of screened potential, a task
which goes beyond the scope of this project.

It is hoped that work may be undertaken in the near future to consider the
analogous problem involving Floquet theory (see e.g. [18]), where the well moves
relative to stationary ionic potentials.
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Appendix A. Derived quantities in the Schrédinger picture

Unfortunately there is no unique Lagrangian density for the Schrodinger
equation’s 'Y but a common choice is,

i . . 1
— 2 — wi*) — —— O Al
£ =5 (¥ — i) - 5-0uron, (A1)
for a generic wavefunction v, so that the Hamiltonian density is H = 9,¢*0,¢/2mi 11
and the momentum density P = —iy*9,1. By way only of example, we confine our

attention to the subsonic compression front at times when the envelopes are ‘sharp’
with respect to other length scales. The wavevunction could locally be written,
V2B = € (z — vyt) efFramiont | gmikremiont | @ (g 4y ) gttt (A.2)
By averaging over wave cycles the momentum density is,
(P) = kyp|€(x —vyt) P + k- |€ (—z +v_t) |* — ks
—i€ (x — vt)" 0, € (z — vyt) — 1€ (—z + v_t)" O, E(—z +v_t). (A.3)
According to the first two terms the compression front absorbs the momentum density
of the original phase at a rate 2m%q(n + ¢)/mi2 and accumulates its own momentum
at a rate 2n2g(n — q)/mi2. This momentum is stored at a uniform density within the
width of the wave. The last two terms of (A.3) describe distributions of momentum
at either end of the wave that average to zero. Conservation of momentum can be
demonstrated by repeating this process for the rarefaction wave and considering the
differential forces applied to either end of the well - which can be inferred by the fact
that the compressed and rarefied phases are locally stationary states with differing,
well defined pressure. The fact that the applied force is constant as the fronts traverse
the well is interesting from the point of view of the projectile that is being modelled.
A similar study of the Hamiltonian density yields the compression wave energy
distribution,
1

(€) = 5 (KIE @ —vat) P+ K216 (-2 +vt) [+ 52

1 1 1This can be derived by applying parts to the expression for the Hamiltonian expectation from
the spatial wavefunction.
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H0aE (@ — v18) |2+ |05 (—2 -+ v_t) 12) : (A.4)

This in particular shows that there is a Gaussian-shaped distribution of energy
localised at either end of the compression wave, which is associated with the envelope
edges. The picture of momentum and energy densities near the boundaries of the
compression wave are necessarily imperfect due to the envelope approximations made
in (11).

Since this report involves discussion of the shocked Fermi-gas, a simple
application of Schrédinger field theory is to verify the Rankine-Hugoniot relations
apply throughout the shock width. However the calculations are not necessarily
so instructive because the Hamiltonian already implies the conservation laws, and
because we already know the characteristics of the phases either side.

Appendix B. TDHFT implementation in C+-+

The TDHFT implementation used in Section 4 was written in C+-+14. Extensive use
is made of the GNU Scientific Library (GSL), in particular the simulation itself is run
in the (BLAS) language of gsl_matrix_complex algebra.

A highly minimalistic, commented version of the TDHFT program is included
with this report. Most of the features used for measuring the properties of the
system (such as the position of the compression front) have been removed for brevity.
There are three .cpp source files which may be compiled to produce corresponding
.exe files. When compiling, it is necessary to link to the GSL installation. The
parameters of the simulations must be changed within the source files themselves.
Physical parameters are the basis dimension, d, electron number, N, shunt parameter,
g, quasi-one-dimensionality parameter, £ and a coupling constant proportional to
e?. It is further possible to change the resolution of the FFT, the number of
iterations for both ground state convergence and time evolution, and the time step.
The first program, kernel.exe, performs the FFT on the pair potential, storing
the result in the file kernel.dat in the home directory. Next, integrator.exe
forms libraries of the matrices A, and MM, respectively in the files hartree.dat
and exchange.dat. The addresses, j, k& of the matrices within these files are
stored separately in Ha_lookup.dat and Ex_lookup.dat. Finally simulator.exe
performs the simulation, printing the nth iteration in the sub-directory /frames/ as
frame_n.png. The current simulation method involves piping to Gnuplot. It is vital
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that simulator.cpp be initialized before compiling so that the path to gnuplot.exe
is specified in the file: if the program cannot call Gnuplot it will be unable to output

data.
All plots which appear in this report were produced using Wolfram Mathematica

11.0.
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